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Inverse cascade in a percolation model: Hierarchical description of time-dependent scaling
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The dynamics of a two-dimensional site percolation model on a square lattice is studied using the hierar-
chical approach introduced by Gabrielet al. [Phys. Rev. E60, 5293 (1999]. The key elements of the
approach are the tree representation of clusters and their coalescence, and the Horton-Strahler scheme for
cluster ranking. Accordingly, the evolution of the percolation model is considered as a hierarchical inverse
cascade of cluster aggregation. A three-exponent time-dependent scaling for the cluster rank distribution is
derived using the Tokunaga branching constraint and classical results on percolation in terms of cluster masses.
Deviations from the pure scaling are described. An empirical constraint on the dynamics of a rank population
is reported based on numerical simulations.
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[. INTRODUCTION cess. Moreover, the ranks are shown essential for formulat-
ing the analytical model$17]. Recent efforts deal with
The percolation model is probably the simplest and besktudying the aggregation dynamics and its various scalings
studied system that experienceggaometrical phase transi- via exactly solvable hierarchical models and extensive simu-
tion of the second kindl1]. It is widely used as a toy model |ations[20].
for spatially distributed stochastic processes, such as diffu- Below we focus on the evolution of the first spanning
sion in disordered media, forest fires, gelation, semiconduceluster in the classical site-percolation model, and decribe it
tion, etc.[1,2]. Importantly for our study, the percolation as a consecutive hierarchical fusion of smaller clusters into
model presents a transparent mechanism of the process lefger ones. It is noteworthy that we are interested not in a
hierarchical aggregatioftoagulation. This process has been final solution of a percolation state, but in the evolutionary
actively employed for describing the essential properties opath leading from the juvenile single-particle clusters to a
material fracture and earthquake nucleatjdn10], starting  Self-similar population of clusters of arbitrarily large size
from the pioneering works of Allegret al.[11] and Newman  (limited by the finiteness of the lattigethe percolation clus-
and Knopoff[12—14. In this paper we describe the evolution ter included. Thus we depart from the steady-state assump-

of percolation model in terms of an inverse cascade of hiertion of [16’1.7’2@ as well as from the asymp_totic focus on
archical cluster aggregation the percolation onset typical for the classical percolation

> - ; . . tudies[1].
An early idea of hierarchical aggregation was introduced® =
by Newman and Knopoff in the “crack-fusion” model for Specifically, we follow{17] and represent each cluster by

repetitive cycles of large earthquakid2—15. Their model a time-oriented tree that reflects the history of cluster forma-
f P d yth Y £ 1 q mf '” ks int tion. The model dynamics is then described in terms of the
ocused on e processes of Tusion of smafl cracks into Sl?thorresponding trees using the well-developed theory of hier-

cessively larger ones, acr_:omm_odating the infl_uence of MalNsrchical scaling complexitiefl9,21]. An important role is
shocks and aftershocks, juvenile crack genesis from tedon(gayed by the Horton-Strahler scheme which provides a
lstressels, craﬁk hef?lmg, <:;|1_nd anelasltlci%res p—mdu_ced tlmde atural ranking for the tree-based structures. Another impor-
ays, pius other effects. 'urcptm al. | ] ave rems'tat.e ant element is the Tokunaga classification which defines a
th's line .Of research c_on5|der|ng a Iog_—blnned de_scrlpnon 0 pecial subclass of trees with self-similar branching. A large
hierarchical aggregation and performing numerical tests tQmper of hierarchies observed in nature are shown to be
study its scaling properties. Gabrielet al. [17] have em- Tokunaga tree§l19]; this is also the case for the clusters in

ployed the HortonI—StrzThI%rl h|era(1jrc|h|c]:cal rank|h];f3,19] to ercolation model§17,20. We use the Tokunaga constraint
construct an exactly solvable model of a general Inverse caggather with classical results on percolation dynantios

cade process. The Horton-Strahler raése Sec. Il Cthat  yomq of cluster masseso derive time-dependent scaling

came from hydrology and have been not well known in,.s tor the rank distribution of clusters. Importantly, we

physical app!ications ha_ppened to be more naturall than Clu?‘éport a three-exponent scaling for the dynamics of a popu-
ter massegsizes, areasin describing the aggregation pro- |5ion of clusters of a given rank, in deviation from the two-

exponent scaling well known for the population of a given
mass[1,22]. We also analyze deviations from the pure scal-

*Electronic address: zal@ess.ucla.edu ing and confirm our results by numerical simulations.
"Electronic address: hiwong@ess.ucla.edu The inverse cascade and aggregatiooagulation pro-
*Electronic address: agabriel@math.purdue.edu cesses are important for evolution of many natural hazardous
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processes: earthquakes, landslides, and forest fires are argued
to follow the hierarchical aggregation dynami&0,23. A
general review of the theory and models of kinetics of irre-
versible aggregation is given by Leyvrgz4]. An alternative
approach to analytical modeling, based on ideas ffti,
but using equations that are consistent with the mass action
law of chemical kinetics, can be found in da Costal.[25].

The paper is organized as follows. The percolation model
is described in Sec. Il; this section also introduces tree rep-
resentation of clusters and the Horton-Strahler ranking. In
Sec. Il we derive the average mass of clusters of a given
rank using the Tokunaga constraint on cluster branching.
'I_'his re_sult will be actively.used in consecutive sgctjons. Sec- FIG. 1. Multiple coalescence of cluster&) Coalescence of
tion 1V'is dgvoted to the tlme-depe'ndent rank d'Str'bUt'on Ofclusters is materialized by adding to the lattice a new parficle
clusters. Firs{Sec. IV A, we establish the exponential rank ,cp that is a neighbor to one, two, three, or four existing clusters
distribution at percolation using the result of Sec. lll. We (,ympered gray sitesThe relative frequencie®), k=1,2,3,4 of
then proceed with time-dependent rank distribution; Secy_coalescences based on simulations wit2000 are shown in the

IVB introduces the three-exponent scaling for ranks andigure. The corresponding tree is constructed as show)irifor
compares it to the well-known Stauffer two-exponent scalingk=1) and (c) (for k=2). The casek=3,4 areanalogous tck=2.

for cluster masses. Scaling for ranks averaged over the entirgote that about 95% of coalescences result in merging two clusters.
evolution of the percolation cluster is derived in Sec. IV C; See text for details.

this result is motivated by the heuristic studies that typically

use averaged observations on a system. Time-dependentjany phenomena encountered in the percolation model
finite-size corrections to the established scalings are desimic what we see when phase transitions of the second
scribed in Sec. IV D. Our study of rank distributions is con-ing occur. Note, however, that these phenomena are of
cluded in Sec. IV E by describing the time-dependent behavyrely geometrical and statistical rather than physical nature.
lor of the total mass of clusters of a given rank. Section Vingeed, the physical percolation theory is largely predicated
analyzes fractal properties of clusters and reports a shagy this geometrical model and there are many empirical links
increase of the cluster fractal dimension in the vicinity of yarveen them: this is why the percolation model is said to be
percolation. Section VI uses simulations to establish & N0z example of thgeometricalphase transition of the second
table constraint on the dynamics of rank populations. Th&ind, and why its nomenclature emerges from that of the

connector

A"

N

results are discussed in Sec. VII. physical critical phenomena.
The theoretical description of the percolation dynamics is
Il. MODEL conventionally given in terms of the cluster masgEs and
most of the universal scalings—a benchmark of phase tran-
A. Dynamics sitions of the second kind—deal with parameters expressed

via the mass distribution of clusters. However, if one is in-

. . . terested in an analytical description of the aggregation pro-
percolation mode(1]. '!'he model dynamics s.tarts. with an Olcess, the mass description happens to be inferior to the hier-
_emptyL X L square lattice. At each step_ a particle is drqppe archical rank approacfil7,20. Properly defined ranks not
E;Oeihrspgggjyiggoser:)#g();:g%ﬁ? So'tneé th;r?iggc:r Se't]eq (ia(g'nly allow one to construct exactly solvable models of ag-
TWo sites are gonsidéreniei hborsif){[he sﬁare one sidel'o ygregation, but also are more feasible for observations in prac-

) °19 y. ' fice. In addition, they reflect the individual history of cluster
each site on a square lattice has four neighbors. A cluster

. ) . . fdrmation. Below we follow the hierarchical approach of
defined as a group of occupied neighbor sifdsTime refers ; . )
to the steps agt WhFi)Ch particFI)es dropgonto the lattice. Since Wgabnelovet al. [17] to study the percolation dynamics.
do not have annihilation of particles, time is formally equiva-
lent to the number of particles on the lattice. It is convenient B. Tree representation of clusters
to normalize time by the lattice siZe? so it varies fromp

=0 at the start tp=1 when all sites are occupied. During the reflects the time-dependent formation of a clugies his-

system evolution, occupied sites start to aggregate and Clu?dry), and is a subject for quantitative analysis. Specifically,

ters begin to form. Once a sufficient number of particles ISeach one-particle cluster is represented by a trivial tree con-

accumulatgd, a percolatipn cIusFer is formed co_nnecting th‘§isting of a single node. When two clusters are merged to-
opposite S|d(_as of_ the lattice vertlcally and/or horlzontally. gether their trees are also merged by adding a new node
The densityp increases monotonically from zero to its (parent for which they become childretand siblings to
critical value p at pe_rcolation_. _For an "?ﬁ_”“e lattice, each othey. In our model, the coalescence of two or more
~0.592 746 06.26], while for a finite lattice it is smallefl]: clusters can only be materialized by adding to the lattice a
new particle which will be a neighbor to one or more exist-
pe(L) = pc—cL™3, (1)  ing clusters. Figure (8) illustrates the four possible types of

We consider the classical two-dimension@D) site-

Each cluster in our model is represented by a tree that
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FIG. 3. (@) Nonuniqueness of tree representation. Two different
FIG. 2. Tree representation of clusters: scheme. The dynamics il-particle clusters that correspond to the same tree showin).in

from left to right. At first step particlé is dropped onto the lattice Particles have been dropped according to the alphabet; so first was

and a one-particle cluster is formed: it is represented by a one-nod&€ particleA, thenB, etc.(b) Horton-Strahler ranking: illustration.

tree. At second step another one-particle clubtés formed; it is ~ The ranks are shown next to the tree nodes.

represented by another one-node tree. At a third step a new particle

C coalesces with clustek to form a two-particle clusteAC. This  cluster, and the set of clusters that correspond to a given tree,

cluster is represented by a three-node tree; note that the connectifg beyond the scope of this paper. Next, we describe the

node of the tree does not correspond to any particle. At a fourth stepanking of clusters, presenting a conventional alternative to
a new particleD connects existing cluster&C and B to form a  the logarithmic binning of cluster masses.

four-particle clusteABCD. This cluster corresponds to a five-node
tree.

. . . C. Horton-Strahler ranking
coalescence. We call k-coalescence in a situation when a

newly dropped particlémarkedN in the figure is a neighbor The appropriate ordering of treédusters is very impor-

to k existing clusterggray numbered sit¢sNumerical simu-  tant for meaningful description and analysis of the model
lations on a square lattice with=2000 suggest the follow- dynamics. The problem of such an ordering is not trivial
ing relative frequencie®, of k coalescencesQ,~0.628, since the clusters may grow and coalesce in a variety of
Q,~0.318, Q;=0.052, Q,~0.002. Figures (b) and Xc) peculiar ways. An advantageous way to solve this problem is
illustrate how a tree is formed for different coalescencegiven by the Horton-Strahler topological classification of
types. There are two basic situations. When a new particle igamified pattern$18,21,27 illustrated in Fig. 8b). One as-

a neighbor to only one existing cluster, it is considered as agigns ranks to the nodes of a tree, starting froni at leaves
individual one-particle cluster that is connected to the exist{clusters consisting of one partigi&Vhen two or more clus-
ing one. The connecting node of the tree in this case does nigrs with ranks;, i=1, ... n merge together, a new cluster is
correspond to a particle on the lattif€ig. 1(b)]. When a  formed with the rank21]

new particle is dropped as a neighbor to two, three, or four f+1 ifrer Ji=1 N
existing clusters, it is not considered as an individual cluster. r=4 1! T S
Instead, it corresponds to the connecting node in the tree max(r;) otherwise.

[Fig. 1(c)]. Thus, the connecting node in a tree may or may
not correspond to a lattice particle depending on the coalesﬁ : : : : L

. . ee. It is possible to consider an alternative definition of
cence type. The branching paramédtarmber of children for b

. . ranks: When at least two clusters with rankoalesce, and
a given parentof a tree for any cluster varies between 2 ar?dother coalescing clusters have a lower rank, the rank of the

4. IN(,:\fve thlat tbOﬂ_] 1- andd_ 2]coales;:er];1(iﬁ3 r(te)sult ind mer?lngew cluster becomest 1. Clearly, the two definitions coin-

only two g ust gi_ﬁ; QCCOT Ing yl TOS OI te 0 Sﬁlrve c?)a €Stide when only two clusters coalesce. The results reported in

cences(aft tﬁu /)}mvo \lle ton y two f us elrs while coales- yg paper are independent of the particular definition, since

cence of three or four clusters Is extremely rare. . coalescence of more than two clustéespecially of high
The consecutive process of tree formation for a S'mpleranks) is a rare event

four—partlcle clus_ter is |IIustrateq in F|g. 2 Important'ly, the Originally introduced in geomorphology by Hortds]

individual evolution of a cluster is crucial in constructing the 4 |ater refined by Strahlg27], this classification is shown

corresponding _hierarchical tree._To construct the tree ON& he inherent in various geophysical, biological, and com-
needs to consider all consecutive coalescences that ha}Sﬁtational applicationfl7,19-21,28 2}9’ ’

formed the cluster, not only its final shape. Therefore, it is

clear that the same tree may correspond to clusters of differ-

ent shape: Fig. (@) shows two 11—part|_cle (_:Iusters that both Il MASS-RANK DISTRIBUTION

correspond to the same tree shown in Figh)3Therefore,

working with trees, we unavoidably narrow the information  In this section we derive the distribution of the average
about the cluster population. Notice, however, that trees capnassm, of rank+ clusters. It will be used consequently to
ture a much larger amount of information than mere clusteconnect various mass and rank scaling laws. First, we define
masses. Summing up, the time evolution of a cluster is neche branching ratid;; for a given cluste(treg) as the num-
essary and sufficient to uniquely determine the correspondser N;; of subcluster¢nodes of ranki that joined subcluster
ing tree, while the inverse is not true. The problem of de-(node of rankj, averaged over subclustgreodes of rank j
scribing the set of trees that might correspond to a giver19,30:

he rank of a cluster is that of the root of the corresponding
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T, = M 10 o
N;
Next we note that the mass of a rankiluster is the sum
of two r—1 cluster masses that formed the clugtee ignore 10° } slope = 0.625
the possibility for three or more clusters to coalesce at the g g
same step plus a unit mass of a joining particle, plus the a
mass of all the lower-rank clusters that joined the considered ‘2"
cluster; hence 102 |
my = 1,
My = (2my + P) + Tyo(my + P),
10°©
12 3 4 5 6 7 8 9 10 N

Mg = (2mp + 1) + Tog(my + 1) + Tyg(my + P),
Rank, r

FIG. 4. Mass-rank distribution observed on a 2602000 lat-
tice at percolation. Dots, individual clusters; balls, average nmass

k-1
within a given rank. Line shows the relatiom =[10°6251
M= (2Mcy+ D) + 2 TcpMg + 1) = (1-P)Ty, k=3, =471 r
i=1
2 —_—
o _2+S+ 5% \(2+5+5)2-8s
Here the coefficienP addresses the possibility for a one- c= 2 . 4
particle cluster to join another cluster in two ways: via a
one-particle connectamwith probability P) or directly (with Remarkably, the model of Gabriel@t al.[17] predicts in
probability 1-P); the clusters witlr > 2 can only join other the Euclidean limit of an inverse cascade mogeisuming
clusters using a one-particle connector. clusters of regular, nonfractal, shape
It was predicted by Gabrieloet al. [17] and later con-
firmed by simulationd20] that clusters in the percolation S~ 0.554 958 13, s=1/sy~ 1.801 937 74,
model obey the Tokunaga scalifg0] asymptotically ink: c= 1/5(2) ~3.246 976 02.
Tk = T= 55", (3

. . Equation(4) in this case gives(sy,s)=3.246 979 6(Qthis is
wheres and s, are parameters. This rewrites BQ) for K the only solution such that>s), which is remarkably close

=3 as (six digits) to the result of[17]. Furthermore, the non-
k-1 Euclidian steady-state simulations of Moraihal. [20] (as-
M= (2CMmey+ 1) + 2 Timei + 1) = (1-P) Ty suming fractal shape of clustérsuggest

i=1
_ o s= 3.0253, s5,=0.6993, c=4.325,
Assuming the mass-rank relation in the form=c'?%, ¢

>1, we obtain which exactly solve Eq4). We found it quite amazing that
k-1 our complementary set of assumptions used to derivé4q.
=2kt 1+ g LA+ 1) - (1 - P)gys<t led to the same numerical results as the analytical stlidy
i and simulations of20]. This suggests an underlying connec-
1 1 tion between our approaches to describe the hierarchical ag-
1-(so) + isk -1 gregation.
1-9lc 2 s-1 The observed mass-rank distribution of clusters at perco-
lation is shown in Fig. 4; it obeys the exponential relation

1

— ~k=2 _
=C 2+ +

[ ok2

- (1-P)sy(slc k'z].
( )So(s/C) m =100V =1, (5)
It is easily checked that this eql_Jation has a solution only ifWith y~0.625,c=10"~4.2. Our simulations suggest that
¢>s thuss/c<1 and for largek it then follows that the mass distribution within a given rank is approximately
1 ko S log-normal(not shown with the mean given by Ed5) and
A 1—-dc a rank-independent standard deviation.

The relation(5) is a key element in our further analysis.
leading to the final equation As we will show, the distribution of cluster ranks at percola-
tion (Sec. IV A) and its finite-size correctior($ec. IV D are
obtained from the corresponding classical laws for masses by
with solution simply substituting the relatio(b). At the same time, one of

c?-c(2+s+5)+25=0
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4.5 10°
4 2
o 5, 10
m=c o=
35 g .
o 10
c )
=
3 go
-6
_g 10
25 g
e -8
o 10
2 r L A r r Z
0.5 0.4 0.3 0.2 0.1 0
Time to percolation, p-p 107 0 1 2 3 4 5
e 10 10 10 10 10 10
FIG. 5. Parametec of the mass-rank relatiom.=c’"! as a Mass, m

function of time. At percolatiort(p,) = 4.2; the Euclidean limit of

[17] corresponds t@=3.25; it is reached at,-p~0.14 FIG. 6. (Color online Mass distribution of clusters observed on
— 9. y c ~VU. .

a 2000x 2000 lattice at percolatiop=p. (dash-dotted ling p
=0.48 (dashed ling and averaged over<Qp<p. (solid ling). To
the most important results, the time-dependent rank distribusmooth out statistical fluctuations we show the cumulative distribu-
tion, cannot be obtained this way and requires an additionalon proportional oS~y For comparison, all curves are nor-
treatment(Sec. IV B). malized to unity am=1.
The exponential relation of Ed5) happens to be valid
over the entire time interval € p<p.. The corresponding 1co
dynamics ofc(p) is shown in Fig. 5: it grows with time from e=—=
about 2.0 at the earliest stages to 4.2 at percolation. This vee—
growth reflects the fact that clusters become more Weight)&vhich together with results of Fig. 5, shows that in the per-
with time due to coupling with the clusters of lower ranks ¢ 3ti0n modele decreases in time passing the Euclidean
(which does not change the rank but increases the)mBise it ¢=1 [17] at (p.- p) =0.14 and approaching the steady-

growth is not monotonic; it is accompanied by pronounce tate “fractal” e~0.68 [20] at p=p. The interval 2<c
log-periodic oscillations which are associated with creation$4 2 observed du.ring dp=p co?responds to 0.68¢
of new ranks. Log-periodic oscillations that accompany the_ ¢ '
general power-law increase of observed parameters have

been found in many systems including hierarchical models

of defect developmeniig], biased diffusion on random lat- IV. RANK DISTRIBUTION
tices [31], diffusion-limited aggregatior{32], and others. This section is devoted to establishing various time-

Log-periodic oscillations can be naturally explained by dis-qenendent scaling laws for clusters of a given rank. We will
crete scale invarianceDSI) [2], which occurs in a system oo that it is typically impossible to derive such laws by

whose observables scale_only for a discrete set of value_s. épplying the mass-rank relatidB) to the coresponding well-
famous example of DSI is given by the Cantor set whichy o\ Jaws for cluster masses. This illustrates the original
possesses a discrete scale symmetry: In order to SUPENimMPOSe,racter and richness of the rank description and prompts
its scaled image onto the original, one has to stretch it by thg,, development of further methods of analysis. We start

discrete factors'3n=1,2,..., not &ontinuous set of values. it the simplest problem: rank distribution at percolation.
The Cantor set and percolation belong to systems with

built-in geometrical hierarchy, leading to DSI. In our particu-
lar system, ranks take only a countable set of values. Cre-
ation of new ranks necessarily disrupts the system in a dis- We start by recalling the well-known cluster mass distri-

‘ [l

N

A. Distribution at percolation

continuous way, resulting in the log-periodicity. bution at percolatiofl]:
Now we return to the numerical value of the parameter _,
In steady-state simulations [#0] c=4.325, which is reason- N(pe) ~ Gom™7, (6)

ably close to what we observe at percolation. Recall that th@vherenm(pc) is the number of clusters of massper lattice
models of{ 17,20 use the “fractal correctioné to the cluster site, and the Fisher exponent 187/91~2.05 is universal
shape; this correction affects the rajg of cluster coales- for 2p systemg1,33. Figure 6 illustrates the mass distribu-
cence. tion at percolation for a system with=2000; to smooth out
o statistical fluctuations it shows the number of clusters with
ry ~ e lLL, mass equal to or larger than: =~ Nm(po). Equation(6)
suggests the slope-1=1.05, while the observed slope 0.96
wherel,; is the total boundary size of the clusters of rank is somewhat less than that. This is due to the impact of two
The correctione can be expressed as concurrent phenomena: so-called deviation from scaling at
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small m [34] and finite-size effects at larga [22,34]; they 10
are discussed below in Sec. IV D.

Now, we use Eq(6) to derive the distribution of the num-
ber n,(p;) of the clusters of rank at percolation. Taking
summation over all clusters of ramkand massn we obtain

Mup
n(pe) = 2 nr,m(pc) = QOE m”

Normalized frequency

My

~ L f(mg ™t~ (myy Y

=1 10°f

m\ ™ m\

= i%_[(i) _(_up) ]mr_ﬁl' ) * Cumulative statis{tics

T rnr mr 10'8 " L & L L

Our simulations suggesghot shown that the mass distribu- 0 2 4 Rank 6 8 10
ank, r

tion within a given rank is log-normal with a rank-
:ndepender][_tl standard divtlr?tlog.' -trhlt;Jst fortf;l]rbltra}ry upper and FIG. 7. (Color onling Rank distribution of clusters observed for
ower quantiiesm,y, My, of this distribution the vaiues 2000x 2000 lattice at percolatiop=p, (dash-dotted ling p=0.29
(dashed ling and averaged over the percolation cycle 8< p.

(solid line). For comparison, all curves are normalized to unity at
m r=1

n'\o(up)

are rank independent. Using this, we finally expragg.)

via m: cluster dynamics: The population of each rank steadily de-

velops to its peak as a result of merging of the clusters of
N(po) = pom;, "t o 105, (8)  lower ranks; then it starts decreasing, creating clusters of
higher ranks. As naturally follows from the model definition,
the peak of the population of a higher rank comes after the
peak of a lower rank. Figure 9 shows the population dynam-
ics for the ranks &r=<11 in semilogarithmic scale. Here
%ne clearly sees the similarity in the dynamics of different
ranks. Note that this figure is remarkably similar to Fig. 7
from [16] which shows the dynamics of clusters with loga-
rithmically binned masses. We now proceed by establishing
Ne(pe) ~ Pom; "L = po(c™ ™Y = py X 107" (9)  the appropriate time-dependent scaling laws.

The power law(8) is observed in the steady-state aggre-
gation model of{20] with index 1.147. This index increase
compared to our 1.05 is due to the fact thaf20] interme-
diate clusters are removed from the lattice providing extr
space for a larger number of smaller clusters.

Combining the mass-rank relatigf) with (8) we obtain
the following exponential rank distribution at percolation:

with 2. Time-dependent mass distribution

Recall that the temporal dynamics of the cluster mass dis-
tribution is given by the two-exponent scaling 1d#,22,35

This is indeed what we observe in Fig. 7 where the rank

P1=pc™ Y, b=(r-1)log;oc~ 0.62.

distribution n, at percolation is shown by the dash-dotted 700
line. The study[20] suggests!""=0.186 while our predic- sook
tions and observations lead ¢ 7~4.2719=0.22. The two N
values are in good agreement; the slight difference is ex- & 500l
plained, as in Eq(8), by removal of intermediate clusters in g
[20]. Next we consider the rank distribution fpr# p.. ‘g 400l
G
: o . B rank 5
B. Dynamical rank distribution: Three-exponent scaling 5 300}
Here we expand the results of the previous section by 'E 200l rank 6
establishing the time-dependent rank distribution. First, we 3
consider the dynamics of rank population. 100k rank 7 \
1. Temporal dynamics of rank population 0 . A .
0.4 0.2 0 0.2
The dynamics of the total numbér,L?) of the clusters of Time to percolation, p-p

a given rank is illustrated in Fig. 8 for=5,6,7. Thepopu-

lation follows a characteristic bell-shaped trajectory, with  FIG. 8. Dynamics of population,L2 of a given rankr=5,6,7
percolation at its rightward limb. As in the case of the massor L=2000. Moment of percolation is depicted by a vertical dashed
description, one does not observe steady-state behavior in thige.
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10" : ' ' ' n(p) ~ 92107, z=(p.-ph(r) +2,  (12)

which is consistent with the exponential rank distribution of
Eq. (9) at percolationfwith py=0gy(zy)]. Possible deviations
from the pure exponential law at<p. (clearly observed in
Fig. 7) and the dynamics of a given raiigee Figs. 8 and)9
are described by the specific forms of the functigps) and
h(-). Following [34] we define

n(2 _ %(2)
n(zp)  Go(%)

and choosd(-) in such a way that the positions of the peaks
of »,(2) coincide for differentr; it is always possible by
o 02 04 06 08 1 choosing the appropriate time chanbé). Figure 1Qa)
shows the ratia/ (z)/ v4(z) for r=2,3,6,8. One can sdhat

the two-exponent scaling does not work in our case: the
FIG. 9. Dynamics of population, of a given rank, &r=<11, in curves do not coincide.

semilogarithmic scale. Moment of percolation is depicted by a ver- Nevertheless, the simple scaling picture is restored by in-
tical dashed lindcf. Fig. 7 from[16]). troducing the additional, third, shift exponent:

v(2) = (13

Normalized frequency, n,

Density, p

M) ~ MT7Ho(D), 2= (pom )0 + 25, (10 h(r)=a; X 107", zo(r) =a, X 10792, (14)

with ¢=1/2. Thefunction f, has a bell-shaped form with The functiongp still can be approximated by a Gaussian

maximum to the left of percolation; it can be roughly ap- function,
proximated by a Gaussian functi¢p2,34] P
9(2) fxeXp(— —) (15)
fo(2) « exp(— a?). (11) 0 >
Note that the shift, is independent ofn. Once the correct scaling form is established, the use of

Considered as a function af, the two-exponent scaling Ed- (5 is again legitimate, and the exponentin Eq. (14)
explains the power-law mass distributiod) at percolation Ccan be evaluated as
[with qu=fy(z5)] as well as the downward bend fpr< p,
clearly observed in Fig. 6dashed ling while as a function
of p it describes the bell-shaped dynamics of clusters wit
given massan.

g1= Ulogloé = 024,

rllvhere ¢=~3 is the median ofc values observed during
< p.. The observed exponent =0.23 (not shown is fairly
close to its predicted value. The shift exponent is estimated
as 0,=~0.03, while the scale coefficients asg~1.54, a,
Combining the scaling law$5) and (10) one formally = 1.43. The functiorgy(z) that uses these estimates is shown
obtains the two-exponent scaling for rank dynamics. How-in Fig. 11 where different symbols depict clusters of different
ever, the two-exponent scaling does not work for ranks; tadanks. The collapse is obvious, confirming the validity of the
show this we assume more generally three-exponent scaling Egd.2), (14), and(15).

3. Time-dependent rank distribution

a | b

1.15

G,(z-0.5)

1.05

-

04 035 03 025 02 015 01 005 0 0 05 03 03 02 X 0
Time to percolation, p-p Normalized density, z

FIG. 10. Scaling for rank dynamic&) Ratiosv,(z)/ v1(z) do not collapse thus rejecting the two-exponent scaling hypothesis; see details
in Sec. IV B 3.(b) Position of percolation on the normalized Gaussigfz—0.51); see details in Sec. IV B 3.
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10' cm T (=m %), (16)
Here the last step neglects the weak dependence of the inte-
| ,’rzg_@@" "“‘““En&&% . gral onm (and uses the values=2.0,0=1/2). The validity
= %&& of (16) is confirmed by the observed averaged mass distribu-
’ - rank 1 N i tion shown by the solid line in Fig. 6. The averaged mass
9,(2) g fa”::g ‘9*% distribution is similar to that at percolation: it retains the
9u(z0) e oy power-law form while the slope is increased by 1/2 due to
o O rank5 LR averaging. .
<l rank6 =N Similarly, we obtain for ranks
* rank7 z?‘f,
rank 8 £, . Pc Pc
% rank 9 ¥4 n ::f nr(p)dp:f 90(2)107"dp
9 0 0
05 04 03 02 0.1 0 e
Time to percolation, p-p = f exp(—a'[(pc— p)1071" —a X 10772110 dp
0
FIG. 11. (Color onling Three-exponent scaling for rank dynam- uy
ics. The master Gaussiagg(z) for different ranks collapse when o 10'("1+b)rf exp{u?/2}du
using the renormalization given by Eq42) and (14). up
o 10—(0'1+b)r — ld(l—o—r)long =10, (17)

In the scaling for cluster masses, the time renormalization
(pc—p)m” collapses the dynamics of massclusters onto  The exponent, may vary from 0.71 to 0.93 depending on
the master curvé,(z—z,) with its only peak shifted by, 3.0<t=<4.2(the range ot values for the time when at least
leftward from percolation; the shifty is mass independent. three ranks have been formed so the estimation of the distri-
Similarly, in the scaling for ranks the time renormalization bution slope is meaningful Simulations suggegsolid line
(pe—p)10°1" collapses the dynamics of ramkclusters onto in Fig. 7) «,=0.87, which is in good agreement with our
the master curvey(z-z), although the shift now is rank prediction. Again, the averaged rank distribution retains the
dependent and is given by ®0 To illustrate this, we show gxponentigl form of the distribution'at percolation; while its
the position of percolation on the right-hand limb of the index has increased due to averaging.
Gaussiargy(z—0.51) in Fig. 10b). The higher the rank, the
closer the position of percolation to the peakggf D. Correction to simple scaling

Due to finiteness of the lattice, the results of previous
C. Averaged scaling sections require some corrections to match exactly the simu-
In applications, it is often impossible to measure the sizdated rank distributions. The appropriate corrections are de-
distribution of system elements at a given time instantScribed below.
Moreover, sometimes the instantaneous size distribution does
not exist at all: This is indeed the case for the systems de- 1. Corrected scaling at percolation
scribed by marked point processes widely used to model
seismicity, volcano activity, starquakes, ef86]. In such
situations one uses the averaged measurements. For insta
the famed Gutenberg-Richter [al87-39 which gives an
exponential approximation to the size distribution of earth-
guakes(via their magnitudesis valid only after appropriate
averaging over a wide spatiotemporal domain. This explain
the importance of the question: How do the distributions o
Egs.(10) and(12) change after temporal averaging?
We answer this question for averaging oves p< p..
For the mass distribution this leads to

The pure power and exponential laws in Figs. 6 and 7 are
ust first-order approximations to the observed cluster distri-
fiitions at percolation. In both cases one sees the downward
bending for small clusters and upward bending for large
clusters. These are not due to statistical fluctuations. The
downward bending for small clusters is explained by devia-
Fions from scalind34]: it can be shown analytically that the
fsmaII clusters do not yet obey the general scaling law of Egs.
(6) and (9), which holds only for large enough masses
(rank9. The upward bend at large clusters is due to finite-
size effecty22,34]: each large cluster that reaches outside
" P pe the lattice boundary is “seen” as a number of smaller clus-
Ny = J nm(p)dp:f fo(zm™"dp ters, thus creating the upward deviation from the pure power
0 (exponentigl law. This phenomenon is especially important
pe when the system is close to percolation and clusters of arbi-
o f exp{— a[(pe— p)m” — zo)?ym "dp trarily large sizes have already been formed. The appropriate
0 scale corrections for the mass distribution were studied by
Uy Hoshenet al. [34] and Margolinaet al. [22].
o m‘T‘”f exp{u?/2}du To study the above phenomena it is convenient to con-
Uy sider the normalized functions

066118-8



INVERSE CASCADE IN A PERCOLATION MODEL... PHYSICAL REVIEW E 71, 066118(2005

a ., b
10° 10
~:~
=) Q@
I
= Finite size effects 107
o} ©
£ o | &
2 © <
3 © =
% L L SR 102
3
S
g Deviations from scaling
o}
g | —
<]
= T 10°
1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 1
Rank, r Rank, r

FIG. 12. Corrections to scaling. The pure exponential rank distribution of(#gsuggests a horizontal plateau for the normalized
function N, =10 n,, while the observed values clearly deviate from the plateau at small and large clast@te large cluster deviation is
due to finite-size effects and is described by an exponential correction ¢fl&qwith d=~0.33 (b).

N, = m™2 S Ny, N, = 10PN, when cluster_s as I_arg_e as 2% of the Iatti_ce_z size are remo_ved,
the cluster size distribution clearly exhibits upward devia-
tions at large rank& =11,12,13) For smaller systems these
which, in the absence of scale corrections, would becomgeviations become dominant and may lead to an artificial

m’'=m

constants: decrease of the observed slope of cluster size distribution;
q this is demonstrated in Figs. 6 and 7 and is also seen in the
Ny = 01, N, = p,c™ L. analysis of Turcottet al. [16] (their Fig. 9.
r—
The functionN, is shown in Fig. 18); it clearly deviates 2. Dynamics of scaling corrections
from the horizontal plateau at both sides. ~ Since the finite-size effects play an important role in shap-
In case of the mass distribution, the corrections to scalingng the observed cluster size distribution, it is worth studying
are given by[22] their dynamics. Specifically, we will be interested in transi-
Ne(po) = M (0o + qlm—Q + qu”DL‘l), (19) tion of the cluster size distribution from the convex shépe

semi- or bilogarithmic scajeat p<<p. to formation of the

where )=0.75, 1D=48/91 is the universal mean cluster upward bend at percolation.

radius exponent, andy,q;,q, are independent of and L. For this we introduce a measure of convexity for the rank

The first additional term describes the deviation from scalinglistribution, defined as the area between,fog(p) and a

for small clusters, while the second one is responsible fochord connecting its first and last points as shown in Fig. 13

finite-size effects. (the pointr=1 is not considered because it is affected by the
For rank distribution, the deviations from scaling at lower deviations from scaling

clusters are only observed for1; while the finite-size ef- ;

fects at large clusters are clearly present for many ranks. ™ _

Accordingly, we propose the following correction to scaling wlp) = L [1ogion(p) = (Ar +B)Jdr, 20

for the rank distribution:

with
N(pe) = 10 (pg + pL20°L™Y, r>1, (19
, logso(n; _/ny)
with =——, B=log;on, - 2A.
IMmax— 2
1
d= D log;pc= 0.33. The values ofu are positive whem,(p) is convex in a semi-

logarithmic scale, negative when it is concave, and vanish

The observed value of can be estimated by plottingn, ~ when it is linear. The measuye(p) averaged over 1000 runs
X 10P"-py) as a function ofr as shown in Fig. 1(b). The on the latticeL=2000 is shown in Fig. 13; the bell-shaped
observed ranks 4r<9 follow the predicted scalingl9)  form of x is decorated by the log-periodic oscillations for
nicely. (pe—p)>1072 explained by creation of new ranks, which

Importantly, the corrections to scaliri9) act at all clus- temporarily increases convexity. The zero level is crossed at
ter sizes, so they cannot be neglected even for the interm@bout (p.—p)=2x 1073, after that the rank distribution is
diate clusters, not only for the largest ones. Indeed, theiconcave. A detailed analysisot shown demonstrates that
effect decreases with increasihg but this decrease is very the distribution is never exactly linear; the transition from
slow. Notably, as shown by Moreiet al.[20] (their Fig. 95 convex to concave shape is realized through a wave-shaped
even for lattices as large ds=30 000 during the process form when the distribution is still convex for the lowerbut
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0.8 700 vl
\ total mass
600 |- ".‘
0.6f number of clusters Fo\d
< 500 | A
. g ; :
> 04 £ 400 | d ‘-..
% 3 ; :
> S 300 |- :
o 0.2} 2 average mass FA N
&} E 200 | i IR
= \ ' ' ; '\'\
O 100 | .
0 L %
0.2 < = —te 0.3 0.4 0.5 0.6 0.7
10 10 10 Density, p

Time to percolation, p.-p
_ _ _ FIG. 14. Dynamics of number of clusters (solid line), total
FIG. 13. Dynamics of scale corrections. A convexity measuremassM, (dashed ling and average mass, (dash-dotted linefor

w(p) is defined by Eq(20) and illustrated in the inset. It is positive clusters of rank =5 (M, andm, not drawn to scale
for convex and negative for concave rank distribution. The down-

ward bend of the rank distribution observed at early stages
>0) is changed to an upward orig<0) for (ps—p) <2X 1073,
See details in Sec. IV D 2.

picture is observed for other ranks. It is tempting to use a
Gaussian approximation féd, and predict Gaussian dynam-
ics of m, (as a ratio of two Gaussianand relate their pa-

) ] o rameters. Detailed analysis, however, demonstrates that un-
is already concave for the higher ones. Qualitatively theyer this approach a peak of, for ranksr=9 should be

same picture is observed for the mass distributigp) (ina  ohserved after percolation; while in simulations this peak is
bilogarithmic scalg S ~ always prior to percolatiotinot shown. Note that one still
The transformation of the cluster size distribution prior Omight approximateM, and m, by Gaussians with properly
percolation is. not unlikg the well-known pattern of an .“up— scaled parameters; such approximations will be good for
ward bend” first described by Narkunskaya and ShnirmaRoygh curve fitting, but will fail to reproduce the deeper
[6,40] in an early static model of defect development. Laterproperties of cluster dynamics. This demonstrates the general

it was found in steel samples and the seismicity of Californigjmitations of Gaussian approximations in the percolation
[41], and confirmed by the dynamical modeling of failure in proplem.

a hierarchical systenfso-called colliding cascade modgls
[5,10!.

E. Mass dynamics of a given rank V. CLUSTER FRACTAL STRUCTURE

Here we consider the dynamics of the total and average In this section we evaluate the fractal structure of clusters

mass of rank- clusters: considering the mass-circumference relation
2 Mm M, mee CPr, (22
My =2 My, m = S, T (21) where C is the number of empty neighbors of a cluster of

massm. For a percolation cluster on an infinite grid we have
Heren,,, denotes the number of clusters of ranknd mass D,=1, which shows that the percolation cluster is a “linear”
m. Figure 14 shows, M,, and m, for rank 5; a similar rather than a space-filling objelt]. Figure 1%a) shows the

10° a 2 b
5 e © 19 FIG. 15. Fractal structure of
10 o 18 clusters. (a) Mass-circumference
- g7 relation for clusters of different
3 b ek £ 16 ranks. The asymptotic power rela-
8 1 v 8 % 15 tion with slope 1.0 gradually de-
= ) . ! T 14 velops as rank increase) Val-
10 > 5 8 5 ues of fractal dimensiol, [Eq.
o = v, (22)] for different ranks. Both
* ? » panels correspond to a 2000
1o X 2000 lattice at percolation.
10° 10° 10° 10° Y 2 3 4 5 6 7 8 9
Circumference, C Rank, r
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1.08 VI. DYNAMICAL CONSTRAINT
Here we report an interesting regularity in rank dynamics
cluster number, n, . . .
1.075} that puts a notable constraint on analytical modeling of the
percolation process. Specifically, we consider the slope be-
Q tween two consecutive points of the rank distribution:
s 1.07}
B
K . n
é / total mass, M, k) 6:(p) :=Inyg (p) .
3 1065} ’ S Nr1(p)
51
8 The dynamics o#, is shown in Fig. 17a) together with that
. . of ng. Note that the peaks of the two curvgsinimum of 6,
1.08 /o and maximum of) coincide. This happens to be true for all
fractal dimension, D, ranks: the positions of corresponding peaks are shown as a
----- o . . . ) ) function of rank in Fig. 1%). Such perfect matching is very
1.055 . . X ;
014 012 01 008 0.06 004 002 O unlikely to be accidental. Thus we conjecture that in order
Time to percolation, p-p for n,(p) to properly describe the time-dependent behavior of

) . ) . rank population, the following system of differential equa-
FIG. 16. Premonitory increase of cluster fractal dimension. Th&jons must have a solution:

steady-state dynamics of fractal dimensidg[Eq. (22)] changes,
andDs starts to increase, as system approaches percolation. A simi- ér =0 {nrnr+1 -n1=0,

lar phenomenon is observed for other ranks. (23

hr+2 =0 I;]r+2 =0.
cluster masses as a function of their circumference for dif- Applying this constraint to the three-exponent scaling of
ferent ranks. It is easily seen how the linear scalyg1  EQs.(12), (14), and(15 we find

gradually develops as rank increases. Figur@ylshows the _ 2

index D, estimated for &r=<9. 0= 01 +10g;o(1 - 10°7). (24)

Figure 16 shows the dynamics Df prior to percolation;  According to Eg.(24), the observed value;=0.23 gives
notably, its steady-state behavior is altered by a gradual ine,=0.04, which is 33% larger than the observed vaiye
crease ap— p.. A similar increase is observed for clusters =0.03. The discrepancy is due to the approximate character
of other ranks. of the Gaussian approximatid5) for gq.

To explain the increase dd, we recall that the rate of
cluster coalescence is proportional to their circumference
(see, e.g[17]). Thus, for a given mass, clusters with a lower
D, have larger circumference, and a higher chance to coa- The goal of this study was to describe the evolution of the
lesce. When a sufficient number of rankiusters have been percolation model in terms of consecutive aggregation of
formed, the clusters with oW, start to coalesce, leaving the smaller clusters into larger ones using the Horton-Strahler
high-D, clusters on the grid. hierarchical scheme. First, this contributes to the understand-

Another reason for the increase bf is the finite-size ing of the percolation phenomenon as a time-dependent hi-
effects. Specifically, this is an effect of having clusters thaterarchical inverse cascade process. Second, this allows one
on an infinite grid have already gained higher ranks, but oro test the validity of the approach introduced by Gabrielov

VII. DISCUSSION

our finite lattice are still small. et al.[17] and further developed by Morekt al. [20] for a
a , D
600 10 J)
< . Q
2 500 [ % o
2] s &
o =
£ 400 z 10" ®
3 8 ®
« 300 g ®
[S) o
3 o 2 o e
g 200 log(ny/n,) £ 10 ®
3 - )
Z 100
-3
0 10
0.2 0.15 0.1 0.05 0 1 2 3 4 5 6 7 8 9
Time to percolation, p-p Rank, r

FIG. 17. Dynamical constraint far,(p). Dynamics of6,=log,o(n4/ns) andng is shown in(a): peaks of two curves coincide. A similar
phenomenon is observed for other ranks: shows the times of maxima of, (circles and minima of6,_, (triangles for 3<r<9 [0,
=log,¢(n4/ns) not drawn to scale
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steady-state approximation to the general aggregation pr@such systems. In addition, simulations on large lattides

cess. =30 000 performed by Moreiret al. [20] show that finite-
We considered dynamical and scaling properties of sitgize effects are still present even for laige
percolation on a 2D square lattice. Followifig7] we de- We have formulated the empirical constraint of E2Q)

scribed clusters by hierarchical trees that reflect the historfor the time-dependent behavior of rank population size
of cluster formation; the Horton—StrahIer_scheme was used t@, (p); the constraint follows very clearly from the observed
rank the trees and thus the corresponding clusters. We coalues ofn,(p). It would be interesting to check this condi-

centrated on the development of the first percolation cluste§jon in real systems traditionally described by the percolation
thus working with a system that does not exhibit the steadymqggel.

state dynamics, contrary to the studiég,2Q that have de-  Qur closing remark is on the indexof cluster mass dis-
veloped mean-field steady-state approximations to the Sysribution at percolatiofiEq. (6)]. The studies of Gabrielogt
tem. al. [17] and Moreinet al. [20] predict 7=2, which slightly

Combining the results obtained in the classical percolageyiates from the well-established theoretical value of the
tion studies with the Tokunaga constraint on the clustelgisher exponent=187/91=2.05. The index of the mass
branching structure we derived various rank-dependent scagistribution is an essential characteristic of a system, thus
ing laws connecting the numbay of clusters of rank;, their  ayen this slight difference of 2.5% might seem disappointing,
average massn, and the rankr. We have compared the jmplying the intrinsically approximate character of the mod-
parameters of these laws with those predicted and observ%]ling 0f[17,20. In fact, this implication is not true. To vali-
in [17,20] in steady-state aggregation models. The values Ofjate the approach 17,20 we notice that the Fisher expo-
parameters are shown to be in a perfect agreement, confirfent is tightly connected to the precise count of cluster
ing the validity of the approach used [7,20. In the ab-  particles on a site level, hardly feasible in practice. At the
sence of the steady-state behavior, we derived the timesame time, studie2,43 have demonstrated that when we
dependent versions of the scaling laws. We reported théharacterize the size distribution of clusters in a way that
three-index scaling12) and (14) for the numbem:(p) of  circumvents the site-level description” considering any
clusters of a given rank, which deviates from the classicatmacroscopic measure of the length scale of the cluster,” the
two-exponent scaling for masses. exponent of the corresponding scaling law becomes 2, uni-

We studied in detail the transition of the system fromyersally for all 2D systems. An example of a “macroscopic
earlier stages to the vicinity of percolation and reported sevmeasure” is the linear size in arbitrary direction, the radius of
eral characteristic phenomena observecpasp.. They in-  gyration, the diameter of the covering disk, etc. Clearly, the
clude transformation of the cluster size distribution not un-modeling of[17,20 deals with such a macroscopic measure

like that observed in seismicity, steel samples, and previougf cluster size, and hence predicts the correct scaling expo-
models of hierarchical fracturg$,6,10,41; and increase of pent.

the cluster fractal dimension. In our simple model these phe-
nomena are partly explainédualitatively as well as quanti-
tatively) by finite-size effects; nevertheless we believe that
they should not be neglected as irrelevant side effects of We are sincerely grateful to Bill Newman for numerous
numerical simulation. In fact, in practice we often work with focused discussions; his criticism and advice have helped
systems that are described by intermediate depth hierarchisgnificantly in organizing and presenting the results. We
(in other words they have an intermediate number of degreghank Vladimir Keilis-Borok, Gleb Morein, and Donald Tur-
of freedon). The percolation results related to small and in-cotte for their continuous interest in the work. This study was
termediate lattices might be of high relevance in describingartly supported by NSF Grant No. ATM 0327558.
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